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Macdonald measure and process generalizes Schur process

Structure of Macdonald polynomials leads to integrable particle 

systems (e.g. q-TASEP, stochastic heat and KPZ equations…)



Eigenrelations satisfied by Macdonald polynomials leads to 

explicit formulas for expectations of observables and certain 

asymptotics



Lecture 3
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Review: Schur processes

+ fixed level dynamics intertwining with      , and eigenrelations 

We will upgrade all of this to full Macdonald setting
   Lecture 3 Page 3    



Macdonald processes
Ruijsenaars-Macdonald system

Representations of Double Affine Hecke Algebras

Hall-Littlewood processes
Random matrices over finite fields

Spherical functions for p-adic groups

General
Random matrices over 

Calogero-Sutherland, Jack polynomials

Spherical functions for Riem. Symm. Sp.

RMT 

q-Whittaker processes
q-TASEP, 2d dynamics

q-deformed quantum Toda lattice

Representations of

Whittaker processes
Directed polymers and their hierarchies

Quantum Toda lattice, repr. of

            Schur processes
Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, GUE

  Characters of symmetric, unitary groups

Kingman partition structures
Cycles of random permutations

Poisson-Dirichlet distributions
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Macdonald polynomials

with partitions                                 form a basis in symmetric

polynomials in N variables over They diagonalize

with (generically) pairwise different eigenvalues

Remarkable properties: Orthogonality (dual basis       ), simple 

Cauchy type identity, Pieri and branching rules, explicit generators 

of the algebra of operators commuting with     , etc. 

Defining Macdonald polynomials [Macdonald, 1987]

   Lecture 3 Page 5    



(Ascending) Macdonald processes

Probability measures on Gelfand-Tsetlin scheme (interlacing array)
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At q=t reduces to Schur function Cauchy identity 

Ex: If                  and M          then                                  (Plancherel specialization)

Cauchy type identity

-Pochhammer symbol

   Lecture 3 Page 7    



At q=t,                 and we recover Schur measure [Okounkov '01]

which is a discrete version of a random matrix eigenvalue 

ensemble; and Schur Process [Okounkov-Reshetikhin '03] which is a 

discrete version of the GUE corner process.

Can think of Macdonald measure as a (q,t)-deformed discrete 

random matrix eigenvalue type ensemble (and analogously 

Macdonald process as deformed eigenvalue corner ensemble).

BUT: For general       this is NOT DETERMINANTAL

Recovering Schur case
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Branching rule: 

Skew Macdonald polynomial

Combinatorial expansion shows for positive a's, 

For example, when t=0: 

Ex: Prove
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Stochastic links from level N to N-1

Maps                               to                                .

Trajectory of this Markov chain defines the Macdonald process

Gibbs property
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Construct explicit Markov operators that map Macdonald 

processes to Macdonald processes (with new parameters)



Evaluate averages of a rich class of observables

We are able to do two basic things [Borodin-C, 2011]:

The integrable structure of Macdonald polynomials directly 

translates into probabilistic content. 

By working at a high combinatorial level we avoid analytic issues 

(eventually need to work hard to take various limits).
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Markov chain on level N preserves class of Macdonald measure:

maps                              to                                .

Discrete time/space (q,t)-deformed Dyson Brownian motion

Markov Intertwining relation lets us construct (2+1)d dynamics
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Multivariate Markov kernel

sequentially updates GT-pattern, mapping

Other dynamics may preserve class too 

[O'Connell-Pei, 2012; Borodin-Petrov, 2013]

to
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Here is an example of a Markov process preserving the class of the 

q-Whittaker processes (Macdonald processes with t=0).             

Each coordinate jumps by 1 to the 

right independently of the others with 

The set of coordinates forms q-TASEP

Rate

simulation

A new particle system: q-TASEP

This is how we first 

discovered q-TASEP!
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Discrete time q-TASEPs

q-TASEP

   polymer

log-Gamma discrete

semi-discrete Brownian 

polymer

KPZ/SHE/continuous Brownian polymer

universal limits (Tracy-Widom distributions, Airy processes)

q-pushASEP

Particle systems described by (limits of) t=0 Macdonald processes

+ previously studied systems 

arising from Schur processes 

(TASEP, LPP, tilings, plane 

partitions, GUE)
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Let       be an operator that is diagonalized by the Macdonald

polynomials (for example, a product of Macdonald operators),

Applying it to the Cauchy type identity
we obtain

If all the ingredients are explicit (as for products of Macdonald 

operators), we obtain meaningful probabilistic information. Contrast 

with the lack of explicit formulas for the Macdonald polynomials.

Evaluation of averages of rich class of observables
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Commuting operators all diagonalized by 

Expectations characterize Macdonald measure

Macdonald difference operators

Ex: Relate at t=q to Schur 

q-difference operators
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Encoding difference operators as contour integrals

For (nice) multiplicative functions

Another example for powers of first difference operators at t=0
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Taking t=0, we have that 

So taking products of the first order Macdonald operators

(on different levels) results in the integral representation

Note

Applying to Macdonald process at t=0
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rate

:  For q-TASEP with step initial data                             

Application to q-TASEP

q-TASEP corresponds to t=0 and 

Taking all         and 

recalling that 
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Deforming nested contours together

Must account for residues from poles crossed in deformation
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where

Small contour expansion
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For all                 simplifies to

Conclusion: for step initial condition q-TASEP

Ex: Prove that

Moments of q-TASEP
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"Mellin Barnes" representation suitable for asymptotics

Moment generating function as a Fredholm determinant

for      small enough. Here
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Moments of              , so they characterize the distribution.

q-deformed exponential [Hahn '49]:

: For q-TASEP with step initial data 

Ex: Prove                     as 

q-Laplace transform Fredholm determinant
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    Some properties of q-Laplace transform

For              and               define

Ex: Prove inversion formula:

     (hint: residues)

Many other nice properties: linearity, scaling, shifts, transformation 

under q-derivative/integral, q-product/convolution relation, useful 

for solving q-difference equations [Bangerezako, 2008].
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Large contour Fredholm determinant

: For q-TASEP with step initial data 

"Cauchy" type formula simpler than "Mellin Barnes" type; 

but apparently harder for asymptotic analysis.
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Lecture 3 summary

Macdonald measure and process generalizes Schur process

Structure of Macdonald polynomials leads to integrable particle 

systems (e.g. q-TASEP, stochastic heat and KPZ equations…)



Eigenrelations satisfied by Macdonald polynomials leads to explicit 

formulas for expectations of observables and certain asymptotics



Lecture 4 preview

Expectations of q-TASEP observables solve integrable many body 

systems which can be solved via variant of Bethe ansatz



Limit to directed polymers shows this is rigorous replica method

Also applies to discrete q-TASEPs, q-PushASEP, and ASEP
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